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Loss of coherence in a system of globally coupled maps

0. Popovych, Yu. Maistrenka! and E. Mosekilde
nstitute of Mathematics, National Academy of Sciences of Ukraine, 01601 Kyiv, Ukraine
2Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
(Received 11 August 2000; published 17 July 2001

We study the formation of symmetric.e., equally sizedor nearly symmetric clusters in an ensemble of
globally coupled, identical chaotic maps. It is shown that the loss of synchronization for the coherent state and
the emergence of subgroups of oscillators with synchronized behavior are two distinct processes, and that the
type of behavior that arises after the loss of total synchronization depends sensitively on the dynamics of the
individual map. For our system of globally coupled logistic maps, symmetric two-cluster formation is found to
proceed through a periodic state associated with the stabilization either of an asynchronous period-2 cycle or
of an asynchronous period-4 cycle. With further reduction of the coupling strength, each of the principal
clustering states undergoes additional bifurcations leading to cycles of higher periodicity or to quasiperiodic
and chaotic dynamics. If desynchronization of the coherent chaotic state occurs before the formation of stable
clusters becomes possible, high-dimensional chaotic motion is observed in the intermediate parameter interval.
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[. INTRODUCTION bally coupled electrochemical reactors. In systems of this
type the nonlocal coupling between the chemical reaction
The purpose of this paper is to study the formation ofsites arises through the electrostatic field; potential changes
clusters of partially synchronized behavior in the ensemble at some location are rapidly transmitted to other locations.
The simplest form of asymptotic dynamics that can arise
e N in the globally coupled map syste¢h) is the fully synchro-
xi(n+1)=(1—g)f(x(n))+ N E f(x;(n)) (1)  nized (or coherent state in which all elements display the
=1 same temporal variation. In this case the motion is restricted
to a one-dimensional invariant  manifold D

of N globally coupled chaotic maps. Hefies1,... Nisa  ={(X1,Xz, ... Xn)|X1=Xo= -+ =Xy}, the main diagonal in
space index for the N-dimensional state vectorx N-dimensional phase space, and along this manifold the dy-
={xi(n)}N,, andn=0,1... is thediscrete time variable. namics is governed by the one-dimensional nfiapf the

eeR is the coupling parameter anttR—R is a one- individual oscillator. For certain values of the parameters

dimensional noninvertible map for which we shall assumeande, the coherent state may attract all trajectories starting

the form f(x)=ax(1—x) (the logistic majp. a will be re-  from points in itsN-dimensional neighborhood. In this case,

ferred to as the nonlinearity parameter of the individual mapthe coherent state is asymptotically stable.

and theN-dimensional map system defined by Ef). will be For other values ok, the phenomenon of clusteririgr

denotedd. partial synchronizationmay occur, i.e., the population of
Globally coupled maps of the forr(l) were originally  oscillators splits into subgrougslusters with different dy-

introduced by Kanek@1] in order to study large systems of namics, but such that all oscillators within a given cluster

identical chaotic oscillators interacting via some kind of aasymptotically move in synchrony. Two-cluster dynamics,

mean field. Examples of such systems are typically found irfor instance, is characterized by a behavior in which two

the biological sciencel?]. The insulin producing3 cells of ~ synchronized groups of oscillators are present

the pancreas, for instance, are known to display complicated

patterns of bursts and spikes in their membrane potentials Xi =X: =-+-=X; =X

[3], and these dynamics may also become chaotic. The 't T2 "Ny

B-cells interact with one another through a variety of differ-

ent mechanisms, including the short range diffusive ex-

change of ions and small molecules via gap junctions. But

there is also a global coupling arising from the response of

the whole population oB-cells to changes in the blood glu- where N;<N and N,=N-—N; denote the number of syn-

cose concentrations produced partly through variations in thehronized elements in each of the two clusters.

total release of insulin. As shown by Stussal. [4,5], this Under these conditions thii-dimensional coupled map

type of global coupling tends to produce self-sustained oscilsystem (1) reduces to a system of two coupled one-
lations in the insulin secretion with a typical period of 2 dimensional maps

hours. Systems of globally coupled chaotic oscillators may

also arise in studies of Josephson junction arf&ysand of

multimode laser$7], and Wanget al. [8] have recently pro- F.(X) _)( FO)+pelf(y) = f(x)] )
vided experimental evidence of clustering in a system of glo- \y f(y)+(1—-pe[f(x)—f(y)])’

XiN1+1:XiN1+2:. CEXGEY, @
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where the parametgr describes the relative distribution of embedded in the synchronized chaotic state takes place. As
oscillators between the two clusters. More precisgly, illustrated by Eq.(3), the same model can be used to study
=N,/N denotes the fraction of the total population that syn-the transition to two-cluster dynamics for a system Nof
chronizes in statg. ForN= 3, for instance, with two clusters coupled logistic maps, provided that the maps distribute
X1=Xp:=X andxz:=Yy, the dynamics of Eq(l) is described themselves symmetrically between the two clusters. In a sub-
by the two-dimensional map with p=1/3. Clearly, forN sequent study by Popovidt al.[20], emphasis was given to
=3, two-cluster dynamics can be realized3i(2!1!)=3  the role of an asymmetric distribution of the oscillators.
different ways. Hence, we have three distifehd mutually ~ Whereas the transverse period-doubling bifurcation remains
symmetrig two-cluster states. For larger values Nf the  essentially unaffected by such an asymmetry, the transverse
possible realizations of a given cluster distribution grow verypitchfork bifurcation was found to be replaced by a trans-
rapidly. In the present paper we shall focus on the formatioreritical riddling bifurcation in which a periodic orbit born in
of symmetric(i.e., equally sizedor nearly symmetric clus- a saddle-node bifurcation passes through the synchronization
ters. manifold and exchanges its transverse stability with a saddle
In his original work, Kanekd1] developed a rough phase cycle of similar periodicity in that manifold.
diagram for the occurrence of different clustering states in Most recently, partial synchronizatiair cluster forma-
the globally coupled map systeft). If the coupling param- tion) has been studied by Maistrenktal.[21] in a system
etere is high enough §=0.355 fora= 3.8), the state of full of three coupled skew-tent maps and by Taboebwal. [22]
synchronization attracts almost all trajectories within a largeén a system of three coupled logistic maps. Applying a spe-
region. For lower values of, the coherent state breaks up cial coupling scheme of relevance in connection with appli-
into a number of clusters. Immediately below the coherentations for secure communication, they have determined the
state one typically finds an ordered state with two-clusteregions in parameter space where total and partial synchro-
dynamics, or, for higher values af a so-called glassy phase nization take place and they have analyzed the bifurcations
where a few large clusters appear to coexist with many smathrough which the coherent stafgotal synchronization
clusters. Finally, as the coupling parameter becomes smaditlireaks down to give way for two- and three-cluster dynam-
enough, a transition to a turbulent state takes place. Herégs.
almost all attracting states involve a large number of clusters, Hamm[23] has considered the asymptotic behavior of a
and the oscillators are nearly completely desynchronized. globally coupled map system in the thermodynamic liMit
In subsequent works, Kaneko has applied the globally—<, and Ouchi and Kanekf24], and Belykhet al. [25]
coupled map approach as a model of biological cell differ-have started to study models with both local and global cou-
entiation[9]. He has also studied the occurrence of Milnorpling as a way of understanding hierarchical pattern forma-
attractors and the role of noise-induced selection in hightion in systems with interactions on different length scales. In
dimensional systen{4.0]. Referring to the original definition this connection it is worth noticing that globally coupled
[11], a Milnor attractor is a state that attracts a positive Le-systems differ qualitatively from locally coupled systems
besgue measure set of points from its neighborhood, but fawith respect to the types of dynamics that they can support.
which this neighborhood may also contain a positive Le-Moreover, in contrast to locally coupled systems, globally
besgue measure set of points that are repelled from theoupled systems do not seem to relax towards a statistical
(weakly) attracting state. The existence of such weak attracequilibrium [26].
tors is closely linked to the recently discovered phenomena With the aim of answering a number of questions that
of riddled basins of attractiohl2,13 and on-off intermit- arise in connection with the phase diagram provided by
tency[14]. Kaneko[1], the present paper performs a bifurcation analysis
Kaneko’s work has also inspired a considerable number obf the transition from coherent behavior to two- and three-
other investigators. In particular, Xie and Hd5] have cluster dynamics for the globally coupled map systéimAs
pointed out that with positive values of the coupling param-previously mentioned we restrict our attention to the emer-
eter synchronous periodic cycles that are stable for the indigence of partially synchronized dynamics with an even or
vidual map are also stable iN-dimensional phase space. nearly even distribution of maps between the clusters. The
Hence, these authors have discussed the transverse destalidirmation of strongly asymmetric clusterg<€1) constitutes
zation of periodic orbits in the period-doubling cascade andh separate problem with a variety of interesting phenomena.
in the main periodic windows for negative values of the cou-We start in Sec. Il by establishing the conditions for trans-
pling parameter. Glendinnind.6] has investigated the frac- verse stability of attractors belonging to aKkydimensional
tal nature of the blowout bifurcation in which the coherentstate of theN-dimensional map. In Sec. Ill, a detailed phase
state loses its average stability in the transverse directiordiagram is presented. We find that, under proper conditions
illustrating how globally coupled map systems can proceedlesynchronization of the coherent state can directly give
through a complicated sequence of synchronizations and déirth to high-dimensional chaotic dynamics. We suppose that
synchronizations in connection with transitions between pethis high-dimensional state has the full dimension of
riodic and chaotic dynamics for the individual map. N-dimensional phase space. Finally, Sec. IV is devoted to a
Considering a system of two coupled, identical logisticstudy of the stability of chaotic two- and three-cluster states.
maps, Maistrenket al. [17] have performed a detailed in- Here, our computer calculations recover the spurious phe-
vestigation of the so-called riddling bifurcatidd 8,19 in nomenon known as synchronization with positive condi-
which the first transverse destabilization of a periodic orbittional (i.e., transverselLyapunov exponent$27,28. This
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type of numerically generated clustering can lead to false In order to examine the conditions for transverse stability

conclusions concerning the occurrence of low-dimensionabf the two-cluster staté2) we consider the Jacobian matrix

dynamics. The phenomenon can be removed by adding BF of the N-dimensional mapb defined by Eq.(1). Re-

small amount of noise to the computations. duced on the subspace defined by E@$, the matrixDF
can be represented as

Il. STABILITY OF K-CLUSTER STATES

Let us suppose that syste) falls into aK-cluster state, D=
i.e., the coordinates of the state vecter{x;}\\, split into K

groups such that in each group the coordinates are identically ) ) ) )
the same whereM (x) andN(y) are symmetric matrices of dimensions

N;XN; andN, X N,, respectively, and denotes the opera-

M(x) L(Y)}
LT(x) N(y)J'

X, =Xi,= Xi\ =Y, tion of transposition. It is easy to show that the maidisd

! has two distinct eigenvalues, ;=f'(x)(1—¢) and v, ,

X _ _ B =f'(y)(1—¢) that occur with the multiplicitiedN;—1 and
ingrn ™ Xingra T Kingan, TY20 N,—1, respectively.

Let now the two-dimensional maf?) have an attractor
A that does not belong to the diagoriak{(x,y)|x=y}.
By virtue of the form of the transverse eigenvalugs, , and
=X =Yk the fact that the corresponding eigenvectors do not depend
(4) on the phase coordinates, the transverse Lyapunov exponents
of the two-cluster state are given by

Ny +No+---+Np ;1 +1 Ny +No+---+Ng 1 +2

The positive integeN; represents the number of variablgs

belonging to thejth cluster,j=1,2, ... K, so thatN;+N, k2
+ .-+ +Ng=N. We note that, by virtue of the complete sym- AP=lim = > Injf’ (x(n)(1—e)|
metry of the systen.e., the fact that all the individual maps ke B N0
are the same for any set{N;} the K-dimensional subspace k2
defined by Eqgs(4) remains invariant for the dynamics in the = lim = 2 In|f’"(x(n))|+ In|1—¢],
corresponding-cluster state. k—oo  N=0
Introducing the set of parametersp;=N;/N,j
=1,2,... K, the dynamics in th&-cluster state can be de- k-1
scribed by the system d€ coupled one-dimensional maps )\(f)zz lim = >, In|f’(y(n))(1—¢)|
' .0 K n=0
< k k-1
yi(n+t1)=(1 e)f(y.(n))+ej§,l p;Fy;(n), = lim %20 In[f’(y(n)|+ In|1—2|,  (6)
k—o f N=

i=1,...K. (6
© evaluated for a typical trajectofy(x(n),y(n))}n_,CA®,
This system is also a globally coupled map system, but with As discussed above, the attrac&?) for the system(3)
different weightsp; associated with the contribution of the of two-coupled maps is at least a Milnor attractor for the
jth cluster to the global coupling. Varying the parametgrs N-dimensional systen{l) when it attracts a positive Le-
in Eq. (5) we can obtain the governing map for any possiblebesgue measure set of points fré. For this to occur, both
K-cluster dynamics of our original systeft). the above Lyapunov exponents must be negafit8].

A necessary condition for the presence of stableluster  Hence, a procedure for finding stable two-cluster states in
behavior in systenfl) is that the mafd5) with the assumed system(1) can be the following. First, we find an attractor
values of the parametefg has a stable invariant satl¥,  APED={(x,y)|x=y} for the system of two coupled maps
but that there is no stable invariant sé&$) with L<K. For  (3). Then two Lyapunov exponents, ;,i=1,2 of the form
example, systemil) with even number of citeBl may dem-  (6) are calculated for typical trajectories @k?). For the
onstrate symmetric two-cluster dynami¢®) if the two-  parameter region where both of these Lyapunov exponents
dimensional maf3) with p=0.5 has a stable invariant set are negative, the system of globally coupled mépshas a
A<2)g; D={(x,y)|x=Yy}. stable(at least in averagdwo-cluster state with a dynamics

Provided that it is stable in the cluster subspace, the corngiven by the two-cluster attractax(®). This procedure does
ditions for an attractoA®) of system(5) to be stable in the not depend on the numbBirof coupled oscillators in Eq(1).
whole N-dimensional phase space are that it is also stable ithe only restriction is that this number should allow the
the transverse directions. The transverse stabilityA6f assumed distribution of variables between the clusters. For
may be asymptotic, when it attracts all trajectories from itsexample, if the two-dimensional systgi3) with p=1/3 has
neighborhood, or weak, wheA®) is stable in the Milnor an attractoiA(® (not belonging to the diagon&), and both
sense, i.e., it attracts a positive Lebesgue measure set of inhe transverse Lyapunov exponents are negative, then the
tial data[11]. N-dimensional systen{l) will have corresponding stable
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two-cluster states aN=3(N;=2,N,=1),N=6(N;=4N, 050
=2),N=9(N;=6N,=3),N=12(N;=8N,=4) , etc.

In the case of periodic dynamics, it can be shown that if
the two-dimensional mag- with Ose<1 has a stable 0.40
period-Z, k=1,2, ..., cycle out of the diagonal with sym-
metric distributions of its points with respect to the diagonal -
(e.g., forp=0.5) then systent1) exhibits stable period®2 0.30
two-cluster dynamics.

By analogy with the two-cluster state, foKacluster state €
(4) with the attractorA(®), one has to iterate the map) on 020 §
A®) and calculateK transverse Lyapunov exponents as 7 .,
given by / 7/ {17

k2 0.10 :/ Lt .
A= lim o 2 Inlf (y;(m)[+ In|1-e], [~
ke B 00 Rio3
0.00—= - . .
i=1.2,... K. (7) 3.50 3.60 3.70 3.80 3.90 4.00

a
. ) .
| When all the L_)I;\]ap:jgnov gxponentﬁ alCT'I negatweélls FIG. 1. Phase diagram for cluster formation in a system of glo-
as.o an at.traCtor : Im(?ljS|ons In the '.nor sengdl]. bally coupled logistic mapsa is the nonlinearity parameter for the
This provides the conditions for the existence of stablg  ividual map, ance is the coupling parameter. The uppermost

K-cluster states for systefd). (dotted curve represents the riddling bifurcation of the one-piece
chaotic coherent sta#&(® in which the fixed poinP{® e A® loses

[ll. DIFFERENT WAYS OF DESYNCHRONIZATION its transverse stability, and the fully drawn fractal curve delineates

FOR THE COHERENT STATE the blowout bifurcation. The smooth fully drawn and dashed bold

Th f thi Lo di K ko's ph curves represent stabilization of the asynchronous period-2 and
e purpose of this section Is to discuss Kaneko's p asSeriod-4 cycles in the symmetric two-cluster states, respectively.

diagram [1] for the occurrence of the various clustering Tpe |owermostdashed-dottedcurve represents the stabilization of
states in more detail and to identify the different types of(anothey period-4 cycle in the symmetric three-cluster state. Re-

bifurcations that occur as the coupling constanand the  gions denoted bk correspond to parameter values where the sys-

nonlinearity para!’netea are varied. tem has stable clusters, and subscripts indicate the cluster numbers.
Coherent motion of the coupled map systéh takes  9z. denotes the region where the dynamics is high-dimensional cha-
place on the main diagondD ={(X1,Xz, ... Xn)|X1=X,  oftic.

=...=xy} of the N-dimensional phase space and is gov-

erned by the logistic map=f,. Depending on the value of dling bifurcation[18,19. This occurs when the first trajec-

a, the coherent dynamics may be either periodic or chaotictory embedded in the synchronous chaotic state becomes

as characterized by the sign of the Lyapunov exponent  transversely unstable. After the riddling bifurcatiok(y) is

no longer stable in the Lyapunov sense. In any small neigh-

i ) borhood of the attractor one can find a positive measure set

Aa= lim k zfo In|f’ (x(n))| of phase points such that the trajectories, when starting from

k= these points, will go away fromA®. Provided that other

asymptotic states, which can be reached from the neighbor-
ood ofA®, do not exist, most of the trajectories will sooner

or later return to the neighborhood Af®. In the presence of

noise, some of the trajectories may again perform a burst,

manifesting the typical bubbling behavifit8]. This type of

characteristic phase dynamics is associated withwviges(or

Milnor) stability of A(®. It gives rise tdocally riddled basins

of attraction for the synchronous chaotic stgt8,19.

In the phase diagram of Fig. 1, the uppermG@itted
curve denotes the transverse destabilization of the fixed point
P{Y=(Xg,Xg, - . - Xo),Xo=1—1/a. In the parametem re-
gime (a>ay,=3.678573) whereA® is one-piece chaotic,
P(f) is the first trajectory o\ to lose its transverse stabil-
ity, and, hence, the dotted curve represents the riddling bifur-
cation curve. This curve can easily be determined analyti-

Transverse destabilization of the coherent motions, if theycally [17]. Below the riddling bifurcation curve the coherent
are chaotic, takes place in two steps. First, the chaotic attrachaotic state is weakly stable only. DestabilizationRiP
tor A®CD loses its asymptotic transverse stability inid  takes place via a transverse period-doubling bifurcation and

k-1

calculated for a typical trajectoryx(n)},_, of f,. For an
ensemble of coupled logistic maps this implies that, for an
particular value of, only a single one-dimensional attractor,
periodic or chaotic, can exist di. Let us denote it byA(®,
where the superscript denotes “symmetric.”

The average transverse stability of the attracd? is
determined by the transverse Lyapunov exponeft=»\,
+ In|1—¢g|. Actually, there aréN— 1 transverse Lyapunov ex-
ponents but, due to the symmetry of systély they are all
equal tox (M) (see Sec. )I. Hence, the coherent motion loses
its transverse stability simultaneously in &1 indepen-
dent transverse directions.

A. Two steps of desynchronization: Riddling and blowout
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produces an asynchronous period-2 saddle around the fixegbt this three-cluster curve lies below the two-cluster curve
point. For slightly lower values of the coupling parameter,given by the stabilization oP, and P,. Therefore, we as-
the synchronous period-2 cycle embedded in the coheresume that the two-cluster bifurcation curve delineates the
chaotic state also undergoes a transverse period-doublinfitst moment of formation of symmetric clusters in the glo-

producing an asynchronous period-4 cycle. bally coupled map systertt).
The fractal curve in Fig. 1 denotes thlwoutbifurcation
of A®. The blowout occurs at =g, =1—e a when the B. Dynamics in the two-cluster state
transverse Lyapunov exponext!) of the synchronous cha- | the two-cluster states, the dynamics is governed by the

otic set changes its sign from minus to plus. After the blow-two-dimensional may$3). Figure 2a) shows a characteristic
out bifurcation,A®® is no longer an attractor but has turned phase portrait after the riddling bifurcation. The fixed point
into a chaotic saddle. Almost all trajectories now go awayP{®={x,=y,=1—(1/a)} belongingA® has become trans-
from the coherent state described by the chaotid§8tand  versely unstable in a period-doubling bifurcation giving rise
in general only a zero measure set of trajectories will apto a saddle period-2 cyclP,. The thin curves connecting
proachA® [18]. One of the main questions of the presentP(f) with the points ofP, represent a separatrix. Close to this
paper is to determine the fate of the diverging trajectoriesseparatrix the trajectories will first approaéy and then
We find that, depending sensitively @nthere are two dif- proceed along one of the unstable manifolds of the saddle
ferent possibilities associated with the mutual disposition oftycle. Hence, there exists a positive measure set of the tra-
the blowout and two-cluster stabilization curves. jectories that, when starting netk® , can move away from

Let a be fixed and let us consider what happens as thé® to a distance given by the deviation B§ from P(f‘). As
control parametek is reduced. If the blowout bifurcation the preimages of the fixed poirﬁt(f) are dense irA®, we
occurs before the appearance of a stable two-cluster state, thenclude that in the neighborhood of any point¥é?, there
coherent phase turns into a high-dimensional chaotic statexists a positive measure set of points that give rise to tra-
With further reduction of parameter, this may be captured jectories that go away frolA® in the direction toward®,,
into one of the periodic two-cluster states. In the opposita.e., the basin of attraction &&(® is locally riddled.
situation, i.e., when the asynchronous periodic cycles stabi- Trajectories that burst away frol(® are restricted to an
lize before the blowout bifurcation, two-cluster states appeaabsorbing areadenoted in Fig. @) by A. This invariant
before the blowout of the coherent state. As a consequencesgion is bounded by the segments of thitical curves Ly
both types of dynamics—fully synchronized chaotic andandL, [29,30. These curves are obtained as the first and the
two-cluster periodic—coexist in some region of the second images of the set
(a,&)-parameter plang20].

In Fig. 1, the solid and dashed bold curves represent the _ 1 1
stabilization of the asynchronous cycl®s (period-2 and Lo=) (x.Y)l x=5]1¥y=3]=9
P, (period-4 forming the possible symmetrir close to
symmetrid two-cluster states. These cycles remain stable irwhich is the locus of points ift? where the JacobiaDF of
some regions under the curves to destabilize with furthethe mapF in Eq. (3) vanishes. As long as the basinA® is
reduction ofe in a Hopf bifurcation. The symmetric two- locally riddled only (no other attractors insidgl), most of
cluster stateP,, which arises as the asynchronous saddlghe trajectories entering into bursts will eventually be at-
cycle produced through a transverse period-doubling bifurtracted byA(®.
cation of the symmetric fixed poi(® , stabilizes in a sub- As we can see from Fig. 1, this type of locally riddled
critical, inverse pitchfork bifurcation along the fully drawn dynamics occurs for a relatively wide regitenotedi;) of
bold curve.P,, which arises from a transverse period dou-the (a,¢)-parameter plane. The lower boundary of this re-
bling of the symmetric period-2 orbit, stabilizes along thegion consists of two very different parts: a fractal boundary
dashed bold curve. It can be seen in Fig. 1 that, dor defined by the blowout bifurcation curve, and a smooth
=3.93, P, stabilizes beforgi.e. for higher values of than boundary corresponding to the symmetric two-cluster forma-
P,. Moreover, slightly asymmetric two-cluster states stabi-tion curve. The corresponding transformations of the dynam-
lize after the symmetric ones whendecreases. In Sec. Ill C ics of the system clearly involve very different processes.
we shall perform a more detailed analysis of the influence of If the parameter pointg, &) leaves the regiofi; through
cluster asymmetry on the stabilization of the cyclesand  the fractal(blowout curve, the absorbing ared defines a
P, (and the dynamics developed from these cycl€se idea Nnew attractor in the plane of the two-cluster state. This is
is to illustrate the important role played by the exactly sym-illustrated in Fig. 2b). As we shall see in Sec. IV, however,
metric two-cluster states for the synchronization phenomenthis type of two-dimensional attractor arising from the coher-
in system(1). ent state in a blowout bifurcation is not stable in the whole

The last(dotted-dashexbifurcation curve shown in Fig. 1 N-dimensional phase space. Transverse to the two-cluster
represents the stabilization of the symmetric three-clustestate, the maximal Lyapunov exponexf’ is positive al-
state. In the moment of this bifurcation, stable period-4though small, growing according to the power ldw
cycles appear in each of the subspaces for the symmetrie £,,|% 1< a<2, whereey, is the blowout bifurcation value.
three-cluster states whose dynamics is governed by system Consider now in more detail the second possibility where
(5) with K=3 andp;=1/3, j=1,2,3. In the region of inter- the (a,&)-parameter point leave®; through the smooth
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1.1 two-cluster formation curve. The characteristic phase portrait
after this transition is presented in Fig(c2 Two different
asymptotic states coexist: a coherent state given by the syn-
chronous chaotic seA® and a periodic two-cluster state
given by the cycleP,. The basin of attraction for the coher-
ent attractor becomeglobally riddledwith the basin ofP,.
In the phase diagram of Fig. 1, the parameter region where
this kind of globally riddled dynamics occur, is denoted by
MR, ,. When (@,e) belongs toR, ,, both coherent and two-
cluster regimes can be realized in syst€éinwhen calcula-
tions are performed with randomly chosen initial conditions.
This follows from the stability of the cycles iN dimensions
as soon as they are stable in the two-cluster Side Sec.
-0.1 ).

-0.1 X 1.1 The lower boundary ofR;, in Fig. 1 is given by the

11 blowout bifurcation curve of the coherent attracd?). Un-
(b) der this curve,A®® is no longer stable even in average.
Hence, only two-cluster stable regimes can be manifested in
system (1) provided that the parameter poing,€) lies
above the three-cluster dotted-dashed cufig fegion. Be-
low the latter curve two- and three-cluster states coexist
(R, 3 region. Moreover, in the lower left corner of Fig. 1,
one can observe a parameter region where the blowout curve
falls below the three-cluster curvéi( , ; region. Here, the
coherent chaotic state and the two-cluster state coexist with
three-cluster dynamics.

The last region in Fig. 1, denoted B, is bounded by
the blowout curve from above and by the symmetric two-
cluster formation curves from below. Here, the dynamics of
L1 system(1) can be high-dimensional chaotic, provided that
strongly asymmetric clusters do not arise. We justify this
statement in Sec. IV by showing that symmetric two- and
three-cluster states are unstable in the whdl@imensional
phase space of systefh) and that the dynamics i, may
be completely uncorrelated, i.e., it is not attracted by a clus-
ter state of lower dimension. The role of strongly asymmetric
clusters for the formation of partially synchronized states
will be considered in a forthcoming publicati¢@1].

(@)

-0.1
-0.1

1.1

C. Formation of the symmetric clusters

As shown above, the appearance of the symmédtic
L e —— slightly asymmetri¢ two-cluster dynamics in the globally
0.1 ’ coupled map systerfl) is caused by the stabilization of the
-0.1 X 1.1 period-2 or period-4 asynchronous cyckesandP,. In this
section we shall consider how the moments of stabilization
FIG. 2. Typlcal phase portraits for the gIObaIIy COUpled map depend on a small cluster asymmetry’ i_e_’ when the param-
system(1) reduced to the symmetric two-cluster subspgee 0.5 eterp in system(3) starts to differ from 0.5. A main conclu-
in Eq. (3)]: (a) locally riddled basin of attraction for the coherent ;51 'is that the symmetric clusters, i.e., with: 0.5, stabilize
stateA® after the riddling bifurcationg= 3.8, ¢ =0.42),(b) on-off at higher values of the coupling’ parlameQrth:';m other.
intermittency after the b.IOWOUt b|f_urcat|on 04\.(3) (a=38, & slightly asymmetric clusters. Moreover, the later the stabili-
=0.34), and(c) globally riddled basin of attraction foA® after zation occurs the larger the asymmetry is. For the symmetric
stabilization of the asynchronous period-2 cy@le (a=3.75, ¢ . .
two-cluster statef=0.5), the cycle®?, andP, are born in

=0.315). The light gray region ifa) and(c) represents the basin of . . . . .
attraction forA®, and the basin of attraction for the on-off attractor tra.nsverse period-doubling bifurcations of the coherent fixed

in (b). The dark gray regions ifc) represent the basin of attraction POINt P{Y andPY), respectively. After the bifurcations they
for the cycleP, whose points are plotted by crossed circles. Thea@re first .unstablés.addle;; to later stabilize in inverse sub-
curvesL; andL, delineate the absorbing ares and P{® is the  Critical pitchfork bifurcations. A characteristic phase portrait
fixed point embedded iA(®. Note that the on-off state ifb) is not ~ for the situation when both cycld3, and P, have already
stable inN-dimensional phase space. become stable is presented in Fig. 3. This figure corresponds
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1.1 035 —————T————
o ) ()
4 Pz* o *“»i ; i
¢ p 0.30
DO ' [
o 1 |
Y e N 025
’,’}‘2’(5) 8 [
o N ().2():
0.1 Crisis
-0.1 % 1.1 0151
FIG. 3. Phase portrait of the globally coupled map systém |
reduced to the symmetric two-cluster subspgee 0.5 in Eq.(3)] 1] MRS T T ;
after stabilization of both the asynchronous perio@enoted byP, 0.20 0.30 0.40 0.50

and plotted by crossed circleand the asynchronous period-de- P
noted byP, and plotted by stajscycles. After the blowout bifur-
cation, the coherent stat&® (dashed line segmenis a chaotic
saddle. The symmetric fixed poitdenoted byP{® and plotted by
the crossed squarand symmetric period-2 cycl@enoted b)P(ZS)
and plotted by trianglgsare repellors being after the transverse
period-doubling bifurcations which give birth #, andP,. Basins 0.35
of attraction for the cycle®, and P, are shown in dark and light
grey, respectively. Parameteas=3.9 ande=0.345. With further
reduction ofe each of the cycle®, andP, undergoes a sequence
of additional bifurcations leading to various forms of quasiperiodic
and chaotic two-cluster dynamics.

0.40 —— ———————————

€ 030

to a parameter point in the regidi, of Fig. 1 where the
synchronized state is a chaotic saddle.

For the case of slightly asymmetric clusters, the cy€lgs 0.25
andP, can be obtained by continuation of those in the sym-
metric case with the parametpr(starting withp=0.5). If
p# 0.5, these cycles stabilize in saddle-node bifurcations off
the main diagonal rather than via inverse, subcritical pitch- 0.20 i e i T T S

fork bifurcations as in the symmetric case<0.5). 0.325 035 0375 04 0425 045 0475 0.5
Figure 4 shows the regions of stability for the various P

types of dynamics that evolve frof, and P, under varia-

tion of p and e for two different values of the nonlinearity FIG. 4. Stability regions in theps)-parameter plane for the
parameten. In Fig. 4a) (a=3.8), the upper boundary of the various types of dynamics in systeB) that develop from the asyn-
stability region(solid curve denoted SNlefines the moment chronous period-2 R,) and period-4 P,) cycles and represent
of stabilization of the asynchronous period-2 cydksn the two-cluster states in Eq1). Bifurcation curves denoted by SN, PD,
afore-said saddle-node bifurcations. This curve is clearlyndH correspond to saddle-node, period-doubling, and Hopf bifur-
seen to assume its maximal value for=0.5, representing cations, respectively. With decreasing valuep ofe can followP,

the fact that symmetric clusters will stabilize before S|ight|ythrough a cascade of period-doubling bifurcations into a chaotic
asymmetric clusters asis reduced. off-diagonal attractor that finally destroys in a boundary crisis. The

For a=3.8. stabilization ofP, occurs at lower values of bold dashed curve bounds the region where the largest Lyapunov
the coupling barameter than s?abilizatioanj and we find exponent transverse to the two-cluster state is negative. Here, sys-

I . . tem (1) displays stable two-cluster states with a distribution be-
the stability region forP, (and for solutions developed from ) . o
P,) in the upper right corner of the stability region 8. tween clusters as defined Ipyand a dynamics that is given by the

! - ttractors developed frorR,. P tera=23.8 i da=4
For a=4.0[Fig. 4(b)], on the other hand?, stabilizes be- % Ez;: ors developed o, Farameters In (&) anda
fore P, (see Fig. 1, and the stability region foP, falls

above that ofP,.

4(b) are the bifurcation curves in th(¢)-parameter plane

As shown in Sec. Il, the stability of a periodic cycle in the for the appearance of the symmetfmr nearly symmetric
two-cluster phase plane implies its stabilityNirdimensional
phase space. Hence, the uppermost curves in Figsaad

two-cluster states. The overlapping stability regions Rgr
and P, imply that the system has two coexisting types of
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FIG. 5. Variation of the largest transverse Lyapunov exponent giG. 6. variation of the largest transverse Lyapunov exponent
(solid bold curve with the coupling parameter for the two-cluster )\(f) for the chaotic two-cluster sta#&® arising immediately after
states beinga) symmetric =0.5) or(b) with 2:1 variable distri-  {he plowout bifurcation of the coherent st&€&). Here, A has a
bution (p=1/3). Parametera=4. Dashed curves represent tom similar to those shown in Fig.(8), and the blowout bifurca-
Lyapunov exponents within the two-cluster state. Note that, wehen tion occurs ak=0.5. Parametea=4. The three curves ife) rep-
decreases, the state stabilizesNndimensions if it becomes an | ocant different values of the asymmetry paramptdn all cases,
attracting cycle. Our inu_erest i§ focused on the behavior ir_nmedime transverse Lyapunov exponent is posifigthough smajl The
ately after the blowout bifurcation of the coherent state, which oc-y5shed curve gives a variation of the transverse Lyapunov exponent
curs ate =0.5. AV of the coherent stata®. In (b), the same graphs in logarith-

mic scale illustrate the power law dependef@e Here, the trans-

two-cluster dynamicgsee, e.g., Fig. )3 With further varia- ~ verse Lyapunov exponents fpr=0.5, p=0.4, andp=0.3 are plot-
tion of the parametens ande, the cycles?, andP,, undergo ted _by C|_rcles, squares, and trla_ngles, respectively. As one can see,
a variety of different bifurcations in which more complicated straight lines within the marks fit the values of the exponents and
two-cluster dynamics arises. Besides periodic cycles oEave slopesa=2 (p=05), a=18 (p=04), ande=17 (p

. . T . . =0.3). We conclude that the chaotic two-cluster state formed in this
higher periodicity, quasiperiodic and chaotic dynamics occurprocess cannot be stable fxdimensional phase space.
Some of the bifurcation curves are indicated in Figs) 4nd
4(b) where period-doubling and Hopf bifurcation curves are |f the attractor in a two-cluster state is quasiperiodic or
denoted PD andH, respectively. A more detailed examina- chaotic, its stability within the two-cluster state does not im-
tion of these dynamics falls outside the scope of the presemly its stability in the full N-dimensional phase space. The
paper. We refer the reader to a previous st[@)] where a  bold dashed curves in Figs(a} and 4b) denote the trans-
number of results in this direction are presented. verse destabilization of the two-cluster attractors developed

0.0
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W} interval arounde=0.23 where\(?) is negative while the
Lyapunov exponents in the two-cluster plane are positive.
Here, we have a transversely stable chaotic two-cluster state.

1.8 . However, through most of the scan the transverse Lyapunov
exponent is positive when the longitudinal exponents are
positive.

1.6F - Figure 6 shows an enlargement of the rightmost parts of

the graphs from Fig. 5 in order to illustrate the power law of
growth for \{?) after the blowout bifurcation for different
L4k J values of the asymmetry paramefeHere,a=4. As we can
see

1.2 ] NP ~lep—2l", e—ep, 8

where a=2 for the symmetric casp=0.5 and decreases
1 S T T S— with decreasingp. This result is supported by plotting the

0.0 0.1 0.2 0.3 0.4 05 graphs on logarithmic scalérig. 6(b)]. Here,As=¢,,— &,

p and the slopes of the linear part of the graphs determine the
exponenta in the power law(8).
The graph ofae= a(p) as a function op is shown in Fig.

7. As it can be seeny decreases with decreasipgMore-
over, a tends to 1 ag approaches 0 and to 2 gsap-
proaches 0.5.

FIG. 7. Variation of the exponent in the power law\(?
~|ep—&|* with the asymmetry parameter For symmetric clus-
ters p=0.5), a~2, anda—1 asp—0. Parametea=4.

from P,, and the lower right curves represent their final
boundary crises. The upper branch of the dashed curve coin-

cides with the saddle-node bifurcation curve of two-cluster B. Chaotic three-cluster state
stabilization. As we can see, there is a fairly large parameter
region where the attractor in the two-cluster state is quasipw
eriodic and yet transversely stable. Below this region there ig
another region where the two-cluster state is transversely up
stable.

As we have just shown, chaotic two-cluster motions,
hen they appear after destabilization of the coherent phase,
re transversely unstable. It follows that the chaotic motions
hat arise must at least be three dimensional. We now show

that the dimension must also be larger than three. To this end,
we give a numerical evidence that chaotic motions in the
IV. TRANSVERSE INSTABILITY symmetric three-cluster states are transversely unstable.
OF CHAOTIC CLUSTERS Figure 8 shows a plot of the transverse Lyapunov expo-

In this section we show that the chaotic motions in then€ntA{*) versus paramete for a symmetric three-cluster
two- and three-cluster states in general are transversely ustate.\{*) becomes positive immediately after the blowout
stable. This applies in particular to the chaotic motions thabifurcation (£ =0.5) and appears to grow in accordance with
appear after the blowout bifurcation of the coherent attractop power law similar to Eq(8). This can be justified as fol-
A, To verify this, we show that the largest transverselows. As illustrated in Fig. 9, the typical trajectory in the
Lyapunov exponents (2 (for the two-cluster stajeand\ (¥ chaotic three-cluster state behaves in such a way that it
(for the three-cluster statare positive. Moreover, immedi- Spends most of the time very near the diagonal two-

ately after the blowout bifurcatiosy, they grow in accor- dimensional planearz_={x.:y,z}, oy={x=zy}, and Ox
dance with a power law. ={x,y=1z}. Moreover, it switches between these planes in an

apparently random manner. From this observation we con-
clude that an approximate value for the transvditsethe
A. Chaotic two-cluster state three-cluster stajeyapunov exponenk{*) can be obtained

Figures %a) and 5b) display scans ok‘? over the range @S calculated on the planes, oy, and o, with the addi-
from £=0 (uncoupled systejnto right above the blowout tional assumptlon that the average time spent near each of
bifurcation (£ =0.5) fora=4 and for two different values of (heS€ planes is the same. This gives
the asymmetry parametep:=0.5 (symmetric clustefsand A®=(27 41 (2)/3 9)
p=1/3(1:2 cluster distribution The scans ok (*) are shown L LT AL
as bold curves. The dashed curves show the variation of the
two Lyapunov exponents that control the two-dimensionalvvherexf)1 and)\(f’)2 are the largest and the second transverse
cluster dynamicg3). In both cases the periodic two-cluster Lyapunov exponents for the chaotic motions in the two-
states stabilize after the blowout bifurcation and this givesluster planesr,,o,, ando,. Using the expressio(6) for
rise to a hyperchaotic attractor bounded in two-dimensionathe transverse Lyapunov exponents for two-cluster states and
phase space by the absorbing arédsee Fig. 2 where the the formula(7) for three-cluster states, we come to the ap-
characteristic form of4 is illustrated. In Fig. 5a) there is an  proximate formula9).
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FIG. 8. Transverse Lyapunov exponex{f) (shown by circles -0.08 ) ) :

0 20000 40000 60000 80000 100000 120000

for a symmetric three-cluster state as a function of the coupling Tieftions

parametere. The largesta®) and the seconc\(?) transverse
Lyapunov exponents for the two-cluster state with 2p=(/3) FIG. 9. Synchronization errors calculated on a typical trajectory
variable distribution between clusters are also shown. The valug) the chaotic three-cluster stdteonsidering system Eq5) with
(2N +\?)/3 is represented by the bold dashed curve that fits theq — 3 andp, =1/3, j=1,2,3)]. We have added a small noise of the
values of{* . We conclude thak {*) becomes positive immediately - maximal ariwplitude 10?2 The first 10 iterations are skipped, and
after the blowout bifurcationg=0.5) and grows in accordance the next 1. 1(P iterations are plotted. The trajectory spends most
with a power law. Herea=4. of its time near the two-dimensional planes={x=vy,z},a,={x
=z,y} ando,={x,y=2}, and it switches between these planes in

To conclude our considerations, we note that the numerian apparently random manner. Parametetst ande = 0.495.
cal calculation of\ (*) has required the introduction of small
noise of the order of 10?2 Without this noise, trajectories
are captured by the two-cluster dynamics because of final 6
precision in the calculations. The average capturing times are
shown in Fig. 10 for single (10°), double (101, and
triple (10 2% precisions, respectively. We suppose that this
capturing phenomenon can explain why high-dimensional
chaotic motions arising after desynchronization of the coher-
ent phase have not previously been reported. Indeed, any
regular calculation(without noise gives evidence of two-
cluster dynamics even though this is actually transversely
unstable as soon as it is chaotic.

It was shown in21] that cluster states arising after blow-
out bifurcation of a coherent attractsee Fig. &)] cannot 10 .
be asymptotically stable in the whohl-dimensional phase
space of the globally coupled map systéth As we can see ,."
now, the lack of a parameter region of asymptotic stability —
may cause these clusters states to also be unstable on the
average. 10° —

0.45 0.46 0.47 0.48 0.49 0.50
€

10 T T T T T T T T

Tterations

V. CONCLUSION

. . . FIG. 10. Averageglover 8000 initial conditionscapturing time
In order to refine the original phase diagram presented by, 5 wvo-cluster state as calculated with single (30 double

Kaneko [1] we investigated in detail the bifurcations in- (10-16 and triple (1024 precisions and shown by dotted-dashed,
volved in the loss of complete synchronization and the forjig, and dashed curves, respectively. By iterating sys@mith
mation of clusters of partially synchronized oscillators in ak =3, p;=1/3,j=1,2,3, anda=4, we find that all trajectories are
system of globally coupled logistic maps. We found that thecaptured by transversally unstable two-cluster states in a finite time.
loss of complete synchronization and the formation of stablerhe capturing phenomenon and the associated spurious stability
two-cluster states are two distinct processes. Moreover, devith positive transverse Lyapunov exponents can be avoided by
pending sensitively on the nonlinearity paramedeof the  adding a small amount of noise to the numerical computations.
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logistic map, the stabilization of symmetrfor nearly sym- We also considered the influence of a small asymmetry in
metric) two-cluster states may occur before or after the blow-the distribution of oscillators between the clusters of the two-
out bifurcation, leading to very different behaviors. cluster state. While stabilization of the symmetric two-cluster

The loss of complete synchronization proceeds via a ridstate takes place via an inverse, subcritical pitchfork bifurca-
dling bifurcation(in which the fixed point loses its transverse tjon, stabilization of asymmetric two-cluster states occurs via
stability in a period-doubling bifurcatiorand a blowout bi- 3 saddle-node bifurcation off the main diagonal. With further
furcation (in which the transverse Lyapunov exponent for areduction of the coupling parameter, the asynchronous cycles
typical trajectory on the synchronized chaotic set becomegyrming the two-cluster state may undergo additional bifur-
pOSitiV@. If the blowout bifurcation occurs before the forma- cations in which more Comp|ex behaviors arise. Chaotic two-
tion of stable two-cluster dynamics becomes possible, the|yster dynamics may occur in relatively small regions of
synchronized chaotic state explodes into a high-dimensiongdarameter space when the two-cluster attractor lies away
hyperchaotic state. The reason why this type of transition hagom the main diagonal. In the phase space of the two-cluster
not previously been observed appears to be related to spuidtate, this type of behavior continues to be attracting until it
ous numerical effects that cause the computed trajectories {g destroyed in a boundary crisis. In the fidtdimensional
be captured in low-dimensional chaotic states, even thOUgbhase space, however, the chaotic two-cluster dynamics
these states are transversely unstable. We showed that chands to be transversely unstable.
otic two- and three-cluster states are transversely unstable \we described a simple general algorithm of finding stable
immediately after the bIOWOUt bifurcation and Obtained thec|uster states based on the form Of transverse Lyapunov ex-
scaling relations relating to the variation of the maximalponents. Considering only a low-dimensional reduced sys-
transversg Lyapunov exponent with the distance to the bifurem of coupled maps and calculating the corresponding
cation point. transverse Lyapunov exponents, one can evaluate the stabil-

Formation of the two-cluster states takes place via thety of the cluster states for a very large lattice of globally
stabilization of asynchronous periodic cycles. For coupledoupled maps.

logistic maps(with the considered coupling structuirenly

the asynchronous period-2 and period-4 cycles are involved

in the initial stage of the forr_natlon of the symmetric two- ACKNOWLEDGMENT

cluster state. We proved that if any of these cycles are stable

in the phase space of the symmetric two-cluster state, then We thank A. Pikovsky for a number of illuminating dis-
they are also stable in the whdledimensional phase space. cussions.
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