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Loss of coherence in a system of globally coupled maps
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We study the formation of symmetric~i.e., equally sized! or nearly symmetric clusters in an ensemble of
globally coupled, identical chaotic maps. It is shown that the loss of synchronization for the coherent state and
the emergence of subgroups of oscillators with synchronized behavior are two distinct processes, and that the
type of behavior that arises after the loss of total synchronization depends sensitively on the dynamics of the
individual map. For our system of globally coupled logistic maps, symmetric two-cluster formation is found to
proceed through a periodic state associated with the stabilization either of an asynchronous period-2 cycle or
of an asynchronous period-4 cycle. With further reduction of the coupling strength, each of the principal
clustering states undergoes additional bifurcations leading to cycles of higher periodicity or to quasiperiodic
and chaotic dynamics. If desynchronization of the coherent chaotic state occurs before the formation of stable
clusters becomes possible, high-dimensional chaotic motion is observed in the intermediate parameter interval.
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I. INTRODUCTION

The purpose of this paper is to study the formation
clusters of partially synchronized behavior in the ensemb

xi~n11!5~12«! f „xi~n!…1
«

N (
j 51

N

f „xj~n!… ~1!

of N globally coupled chaotic maps. Here,i 51, . . . ,N is a
space index for the N-dimensional state vectorx
5$xi(n)% i 51

N , andn50,1 . . . is thediscrete time variable
«PR is the coupling parameter andf :R→R is a one-
dimensional noninvertible map for which we shall assu
the form f (x)5ax(12x) ~the logistic map!. a will be re-
ferred to as the nonlinearity parameter of the individual m
and theN-dimensional map system defined by Eq.~1! will be
denotedF.

Globally coupled maps of the form~1! were originally
introduced by Kaneko@1# in order to study large systems o
identical chaotic oscillators interacting via some kind of
mean field. Examples of such systems are typically found
the biological sciences@2#. The insulin producingb cells of
the pancreas, for instance, are known to display complica
patterns of bursts and spikes in their membrane poten
@3#, and these dynamics may also become chaotic.
b-cells interact with one another through a variety of diffe
ent mechanisms, including the short range diffusive
change of ions and small molecules via gap junctions.
there is also a global coupling arising from the response
the whole population ofb-cells to changes in the blood glu
cose concentrations produced partly through variations in
total release of insulin. As shown by Sturiset al. @4,5#, this
type of global coupling tends to produce self-sustained os
lations in the insulin secretion with a typical period of
hours. Systems of globally coupled chaotic oscillators m
also arise in studies of Josephson junction arrays@6# and of
multimode lasers@7#, and Wanget al. @8# have recently pro-
vided experimental evidence of clustering in a system of g
1063-651X/2001/64~2!/026205~11!/$20.00 64 0262
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bally coupled electrochemical reactors. In systems of t
type the nonlocal coupling between the chemical react
sites arises through the electrostatic field; potential chan
at some location are rapidly transmitted to other location

The simplest form of asymptotic dynamics that can ar
in the globally coupled map system~1! is the fully synchro-
nized ~or coherent! state in which all elements display th
same temporal variation. In this case the motion is restric
to a one-dimensional invariant manifold D
5$(x1 ,x2 , . . . ,xN)ux15x25•••5xN%, the main diagonal in
N-dimensional phase space, and along this manifold the
namics is governed by the one-dimensional mapf of the
individual oscillator. For certain values of the parametersa
and«, the coherent state may attract all trajectories start
from points in itsN-dimensional neighborhood. In this cas
the coherent state is asymptotically stable.

For other values of«, the phenomenon of clustering~or
partial synchronization! may occur, i.e., the population o
oscillators splits into subgroups~clusters! with different dy-
namics, but such that all oscillators within a given clus
asymptotically move in synchrony. Two-cluster dynamic
for instance, is characterized by a behavior in which t
synchronized groups of oscillators are present

xi 1
5xi 2

5•••5xi N1
ªx

xi N111
5xi N112

5•••5xi N
ªy, ~2!

where N1,N and N25N2N1 denote the number of syn
chronized elements in each of the two clusters.

Under these conditions theN-dimensional coupled map
system ~1! reduces to a system of two coupled on
dimensional maps

F:S x

yD→S f ~x!1p«@ f ~y!2 f ~x!#

f ~y!1~12p!«@ f ~x!2 f ~y!#
D , ~3!
©2001 The American Physical Society05-1
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where the parameterp describes the relative distribution o
oscillators between the two clusters. More precisely,p
5N2 /N denotes the fraction of the total population that sy
chronizes in statey. ForN53, for instance, with two cluster
x15x2ªx andx3ªy, the dynamics of Eq.~1! is described
by the two-dimensional mapF with p51/3. Clearly, forN
53, two-cluster dynamics can be realized in3!/(2!1!)53
different ways. Hence, we have three distinct~and mutually
symmetric! two-cluster states. For larger values ofN, the
possible realizations of a given cluster distribution grow ve
rapidly. In the present paper we shall focus on the format
of symmetric~i.e., equally sized! or nearly symmetric clus-
ters.

In his original work, Kaneko@1# developed a rough phas
diagram for the occurrence of different clustering states
the globally coupled map system~1!. If the coupling param-
eter« is high enough («*0.355 fora53.8), the state of full
synchronization attracts almost all trajectories within a la
region. For lower values of«, the coherent state breaks u
into a number of clusters. Immediately below the coher
state one typically finds an ordered state with two-clus
dynamics, or, for higher values ofa, a so-called glassy phas
where a few large clusters appear to coexist with many sm
clusters. Finally, as the coupling parameter becomes s
enough, a transition to a turbulent state takes place. H
almost all attracting states involve a large number of clust
and the oscillators are nearly completely desynchronized

In subsequent works, Kaneko has applied the glob
coupled map approach as a model of biological cell diff
entiation @9#. He has also studied the occurrence of Miln
attractors and the role of noise-induced selection in hi
dimensional systems@10#. Referring to the original definition
@11#, a Milnor attractor is a state that attracts a positive L
besgue measure set of points from its neighborhood, bu
which this neighborhood may also contain a positive L
besgue measure set of points that are repelled from
~weakly! attracting state. The existence of such weak attr
tors is closely linked to the recently discovered phenom
of riddled basins of attraction@12,13# and on-off intermit-
tency @14#.

Kaneko’s work has also inspired a considerable numbe
other investigators. In particular, Xie and Hu@15# have
pointed out that with positive values of the coupling para
eter synchronous periodic cycles that are stable for the i
vidual map are also stable inN-dimensional phase spac
Hence, these authors have discussed the transverse des
zation of periodic orbits in the period-doubling cascade a
in the main periodic windows for negative values of the co
pling parameter. Glendinning@16# has investigated the frac
tal nature of the blowout bifurcation in which the cohere
state loses its average stability in the transverse direct
illustrating how globally coupled map systems can proce
through a complicated sequence of synchronizations and
synchronizations in connection with transitions between
riodic and chaotic dynamics for the individual map.

Considering a system of two coupled, identical logis
maps, Maistrenkoet al. @17# have performed a detailed in
vestigation of the so-called riddling bifurcation@18,19# in
which the first transverse destabilization of a periodic or
02620
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embedded in the synchronized chaotic state takes place
illustrated by Eq.~3!, the same model can be used to stu
the transition to two-cluster dynamics for a system ofN
coupled logistic maps, provided that the maps distrib
themselves symmetrically between the two clusters. In a s
sequent study by Popovichet al. @20#, emphasis was given to
the role of an asymmetric distribution of the oscillator
Whereas the transverse period-doubling bifurcation rema
essentially unaffected by such an asymmetry, the transv
pitchfork bifurcation was found to be replaced by a tran
critical riddling bifurcation in which a periodic orbit born in
a saddle-node bifurcation passes through the synchroniza
manifold and exchanges its transverse stability with a sad
cycle of similar periodicity in that manifold.

Most recently, partial synchronization~or cluster forma-
tion! has been studied by Maistrenkoet al. @21# in a system
of three coupled skew-tent maps and by Taborovet al. @22#
in a system of three coupled logistic maps. Applying a s
cial coupling scheme of relevance in connection with app
cations for secure communication, they have determined
regions in parameter space where total and partial sync
nization take place and they have analyzed the bifurcati
through which the coherent state~total synchronization!
breaks down to give way for two- and three-cluster dyna
ics.

Hamm @23# has considered the asymptotic behavior o
globally coupled map system in the thermodynamic limitN
→`, and Ouchi and Kaneko@24#, and Belykhet al. @25#
have started to study models with both local and global c
pling as a way of understanding hierarchical pattern form
tion in systems with interactions on different length scales
this connection it is worth noticing that globally couple
systems differ qualitatively from locally coupled system
with respect to the types of dynamics that they can supp
Moreover, in contrast to locally coupled systems, globa
coupled systems do not seem to relax towards a statis
equilibrium @26#.

With the aim of answering a number of questions th
arise in connection with the phase diagram provided
Kaneko@1#, the present paper performs a bifurcation analy
of the transition from coherent behavior to two- and thre
cluster dynamics for the globally coupled map system~1!. As
previously mentioned we restrict our attention to the em
gence of partially synchronized dynamics with an even
nearly even distribution of maps between the clusters. T
formation of strongly asymmetric clusters (p!1) constitutes
a separate problem with a variety of interesting phenome
We start in Sec. II by establishing the conditions for tran
verse stability of attractors belonging to anyK-dimensional
state of theN-dimensional map. In Sec. III, a detailed pha
diagram is presented. We find that, under proper conditi
desynchronization of the coherent state can directly g
birth to high-dimensional chaotic dynamics. We suppose t
this high-dimensional state has the full dimension
N-dimensional phase space. Finally, Sec. IV is devoted t
study of the stability of chaotic two- and three-cluster stat
Here, our computer calculations recover the spurious p
nomenon known as synchronization with positive con
tional ~i.e., transverse! Lyapunov exponents@27,28#. This
5-2
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type of numerically generated clustering can lead to fa
conclusions concerning the occurrence of low-dimensio
dynamics. The phenomenon can be removed by addin
small amount of noise to the computations.

II. STABILITY OF K-CLUSTER STATES

Let us suppose that system~1! falls into aK-cluster state,
i.e., the coordinates of the state vectorx5$xi% i 51

N split into K
groups such that in each group the coordinates are identic
the same

xi 1
5xi 2

5•••5xi N1
ªy1 ,

xi N111
5xi N112

5•••5xi N11N2
ªy2 ,

A

xi N11N21•••1NK2111
5xi N11N21•••1NK2112

5•••5xi N
ªyK .

~4!

The positive integerNj represents the number of variablesxi
belonging to thej th cluster, j 51,2, . . . ,K, so thatN11N2
1•••1NK5N. We note that, by virtue of the complete sym
metry of the system~i.e., the fact that all the individual map
are the same!, for any set$Nj% the K-dimensional subspac
defined by Eqs.~4! remains invariant for the dynamics in th
correspondingK-cluster state.

Introducing the set of parameterspj5Nj /N, j
51,2, . . . ,K, the dynamics in theK-cluster state can be de
scribed by the system ofK coupled one-dimensional maps

yi~n11!5~12«! f „yi~n!…1«(
j 51

K

pj f „yj~n!…,

i 51, . . . ,K. ~5!

This system is also a globally coupled map system, but w
different weightspj associated with the contribution of th
j th cluster to the global coupling. Varying the parameterspj
in Eq. ~5! we can obtain the governing map for any possi
K-cluster dynamics of our original system~1!.

A necessary condition for the presence of stableK-cluster
behavior in system~1! is that the map~5! with the assumed
values of the parameterspj has a stable invariant setA(K),
but that there is no stable invariant setsA(L) with L,K. For
example, system~1! with even number of citesN may dem-
onstrate symmetric two-cluster dynamics~2! if the two-
dimensional map~3! with p50.5 has a stable invariant se
A(2)£D5$(x,y)ux5y%.

Provided that it is stable in the cluster subspace, the c
ditions for an attractorA(K) of system~5! to be stable in the
whole N-dimensional phase space are that it is also stabl
the transverse directions. The transverse stability ofA(K)

may be asymptotic, when it attracts all trajectories from
neighborhood, or weak, whenA(K) is stable in the Milnor
sense, i.e., it attracts a positive Lebesgue measure set o
tial data@11#.
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In order to examine the conditions for transverse stabi
of the two-cluster state~2! we consider the Jacobian matr
DF of the N-dimensional mapF defined by Eq.~1!. Re-
duced on the subspace defined by Eqs.~2!, the matrixDF
can be represented as

DF5F M ~x! L~y!

LT~x! N~y!
G ,

whereM (x) andN(y) are symmetric matrices of dimension
N13N1 andN23N2, respectively, andT denotes the opera
tion of transposition. It is easy to show that the matrixDF
has two distinct eigenvaluesn',15 f 8(x)(12«) and n',2
5 f 8(y)(12«) that occur with the multiplicitiesN121 and
N221, respectively.

Let now the two-dimensional map~2! have an attractor
A(2) that does not belong to the diagonalD5$(x,y)ux5y%.
By virtue of the form of the transverse eigenvaluesn',1,2 and
the fact that the corresponding eigenvectors do not dep
on the phase coordinates, the transverse Lyapunov expon
of the two-cluster state are given by

l',1
(2) 5 lim

k→`

1

k (
n50

k21

lnu f 8„x~n!…~12«!u

5 lim
k→`

1

k (
n50

k21

lnu f 8~x~n!!u1 lnu12«u,

l',2
(2) 5 lim

k→`

1

k (
n50

k21

lnu f 8„y~n!…~12«!u

5 lim
k→`

1

k (
n50

k21

lnu f 8„y~n!…u1 lnu12«u, ~6!

evaluated for a typical trajectory$(x(n),y(n))%n50
` ,A(2).

As discussed above, the attractorA(2) for the system~3!
of two-coupled maps is at least a Milnor attractor for t
N-dimensional system~1! when it attracts a positive Le
besgue measure set of points fromRN. For this to occur, both
the above Lyapunov exponents must be negative@18#.
Hence, a procedure for finding stable two-cluster states
system~1! can be the following. First, we find an attracto
A(2)£D5$(x,y)ux5y% for the system of two coupled map
~3!. Then two Lyapunov exponentsl',i ,i 51,2 of the form
~6! are calculated for typical trajectories onA(2). For the
parameter region where both of these Lyapunov expon
are negative, the system of globally coupled maps~1! has a
stable~at least in average! two-cluster state with a dynamic
given by the two-cluster attractorA(2). This procedure does
not depend on the numberN of coupled oscillators in Eq.~1!.
The only restriction is that this number should allow t
assumed distribution of variables between the clusters.
example, if the two-dimensional system~3! with p51/3 has
an attractorA(2) ~not belonging to the diagonalD), and both
the transverse Lyapunov exponents are negative, then
N-dimensional system~1! will have corresponding stable
5-3
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two-cluster states atN53(N152,N251),N56(N154,N2
52),N59(N156,N253),N512(N158,N254) , etc.

In the case of periodic dynamics, it can be shown tha
the two-dimensional mapF with 0<«<1 has a stable
period-2k, k51,2, . . . , cycle out of the diagonal with sym
metric distributions of its points with respect to the diagon
~e.g., for p50.5) then system~1! exhibits stable period-2k

two-cluster dynamics.
By analogy with the two-cluster state, for aK-cluster state

~4! with the attractorA(K), one has to iterate the map~5! on
A(K) and calculateK transverse Lyapunov exponents
given by

l', j
(K)5 lim

k→`

1

k (
n50

k21

lnu f 8~yj~n!!u1 lnu12«u,

j 51,2, . . . ,K. ~7!

When all the Lyapunov exponents are negative,A(K) is
also an attractor inN dimensions in the Milnor sense@11#.
This provides the conditions for the existence of sta
K-cluster states for system~1!.

III. DIFFERENT WAYS OF DESYNCHRONIZATION
FOR THE COHERENT STATE

The purpose of this section is to discuss Kaneko’s ph
diagram @1# for the occurrence of the various clusterin
states in more detail and to identify the different types
bifurcations that occur as the coupling constant« and the
nonlinearity parametera are varied.

Coherent motion of the coupled map system~1! takes
place on the main diagonalD5$(x1 ,x2 , . . . ,xN)ux15x2
5•••5xN% of the N-dimensional phase space and is go
erned by the logistic mapf 5 f a . Depending on the value o
a, the coherent dynamics may be either periodic or chao
as characterized by the sign of the Lyapunov exponent

la5 lim
k→`

1

k (
n50

k21

lnu f 8„x~n!…u

calculated for a typical trajectory$x(n)%n50
` of f a . For an

ensemble of coupled logistic maps this implies that, for a
particular value ofa, only a single one-dimensional attracto
periodic or chaotic, can exist onD. Let us denote it byA(s),
where the superscript denotes ‘‘symmetric.’’

The average transverse stability of the attractorA(s) is
determined by the transverse Lyapunov exponentl'

(1)5la

1 lnu12«u. Actually, there areN21 transverse Lyapunov ex
ponents but, due to the symmetry of system~1!, they are all
equal tol'

(1) ~see Sec. II! . Hence, the coherent motion lose
its transverse stability simultaneously in allN21 indepen-
dent transverse directions.

A. Two steps of desynchronization: Riddling and blowout

Transverse destabilization of the coherent motions, if th
are chaotic, takes place in two steps. First, the chaotic att
tor A(s),D loses its asymptotic transverse stability in arid-
02620
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dling bifurcation @18,19#. This occurs when the first trajec
tory embedded in the synchronous chaotic state beco
transversely unstable. After the riddling bifurcation,A(s) is
no longer stable in the Lyapunov sense. In any small nei
borhood of the attractor one can find a positive measure
of phase points such that the trajectories, when starting f
these points, will go away fromA(s). Provided that other
asymptotic states, which can be reached from the neigh
hood ofA(s), do not exist, most of the trajectories will soon
or later return to the neighborhood ofA(s). In the presence of
noise, some of the trajectories may again perform a bu
manifesting the typical bubbling behavior@18#. This type of
characteristic phase dynamics is associated with theweak~or
Milnor! stability of A(s). It gives rise tolocally riddledbasins
of attraction for the synchronous chaotic state@18,19#.

In the phase diagram of Fig. 1, the uppermost~dotted!
curve denotes the transverse destabilization of the fixed p
P1

(s)5(x0 ,x0 , . . . ,x0),x05121/a. In the parametera re-
gime (a.a0>3.678573) whereA(s) is one-piece chaotic
P1

(s) is the first trajectory onA(s) to lose its transverse stabi
ity, and, hence, the dotted curve represents the riddling bi
cation curve. This curve can easily be determined anal
cally @17#. Below the riddling bifurcation curve the cohere
chaotic state is weakly stable only. Destabilization ofP1

(s)

takes place via a transverse period-doubling bifurcation

FIG. 1. Phase diagram for cluster formation in a system of g
bally coupled logistic maps.a is the nonlinearity parameter for th
individual map, and« is the coupling parameter. The uppermo
~dotted! curve represents the riddling bifurcation of the one-pie
chaotic coherent stateA(s) in which the fixed pointP1

(s)PA(s) loses
its transverse stability, and the fully drawn fractal curve delinea
the blowout bifurcation. The smooth fully drawn and dashed b
curves represent stabilization of the asynchronous period-2
period-4 cycles in the symmetric two-cluster states, respectiv
The lowermost~dashed-dotted! curve represents the stabilization o
~another! period-4 cycle in the symmetric three-cluster state. R
gions denoted byR correspond to parameter values where the s
tem has stable clusters, and subscripts indicate the cluster num
Rc denotes the region where the dynamics is high-dimensional
otic.
5-4
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produces an asynchronous period-2 saddle around the
point. For slightly lower values of the coupling paramet
the synchronous period-2 cycle embedded in the cohe
chaotic state also undergoes a transverse period-doub
producing an asynchronous period-4 cycle.

The fractal curve in Fig. 1 denotes theblowoutbifurcation
of A(s). The blowout occurs at«5«bl512e2la when the
transverse Lyapunov exponentl'

(1) of the synchronous cha
otic set changes its sign from minus to plus. After the blo
out bifurcation,A(s) is no longer an attractor but has turne
into a chaotic saddle. Almost all trajectories now go aw
from the coherent state described by the chaotic setA(s), and
in general only a zero measure set of trajectories will
proachA(s) @18#. One of the main questions of the prese
paper is to determine the fate of the diverging trajector
We find that, depending sensitively ona, there are two dif-
ferent possibilities associated with the mutual disposition
the blowout and two-cluster stabilization curves.

Let a be fixed and let us consider what happens as
control parameter« is reduced. If the blowout bifurcation
occurs before the appearance of a stable two-cluster state
coherent phase turns into a high-dimensional chaotic s
With further reduction of parameter«, this may be captured
into one of the periodic two-cluster states. In the oppos
situation, i.e., when the asynchronous periodic cycles st
lize before the blowout bifurcation, two-cluster states app
before the blowout of the coherent state. As a conseque
both types of dynamics—fully synchronized chaotic a
two-cluster periodic—coexist in some region of th
(a,«)-parameter plane@20#.

In Fig. 1, the solid and dashed bold curves represent
stabilization of the asynchronous cyclesP2 ~period-2! and
P4 ~period-4! forming the possible symmetric~or close to
symmetric! two-cluster states. These cycles remain stable
some regions under the curves to destabilize with furt
reduction of« in a Hopf bifurcation. The symmetric two
cluster stateP2, which arises as the asynchronous sad
cycle produced through a transverse period-doubling bi
cation of the symmetric fixed pointP1

(s) , stabilizes in a sub-
critical, inverse pitchfork bifurcation along the fully draw
bold curve.P4, which arises from a transverse period do
bling of the symmetric period-2 orbit, stabilizes along t
dashed bold curve. It can be seen in Fig. 1 that, fora
*3.93, P4 stabilizes before~i.e. for higher values of« than!
P2. Moreover, slightly asymmetric two-cluster states sta
lize after the symmetric ones when« decreases. In Sec. III C
we shall perform a more detailed analysis of the influence
cluster asymmetry on the stabilization of the cyclesP2 and
P4 ~and the dynamics developed from these cycles!. The idea
is to illustrate the important role played by the exactly sy
metric two-cluster states for the synchronization phenom
in system~1!.

The last~dotted-dashed! bifurcation curve shown in Fig. 1
represents the stabilization of the symmetric three-clu
state. In the moment of this bifurcation, stable period
cycles appear in each of the subspaces for the symm
three-cluster states whose dynamics is governed by sy
~5! with K53 andpj51/3, j 51,2,3. In the region of inter-
02620
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est this three-cluster curve lies below the two-cluster cu
given by the stabilization ofP2 and P4. Therefore, we as-
sume that the two-cluster bifurcation curve delineates
first moment of formation of symmetric clusters in the gl
bally coupled map system~1!.

B. Dynamics in the two-cluster state

In the two-cluster states, the dynamics is governed by
two-dimensional map~3!. Figure 2~a! shows a characteristic
phase portrait after the riddling bifurcation. The fixed po
P1

(s)5$x05y0512(1/a)% belongingA(s) has become trans
versely unstable in a period-doubling bifurcation giving ri
to a saddle period-2 cycleP2. The thin curves connecting
P1

(s) with the points ofP2 represent a separatrix. Close to th
separatrix the trajectories will first approachP2 and then
proceed along one of the unstable manifolds of the sad
cycle. Hence, there exists a positive measure set of the
jectories that, when starting nearP1

(s) , can move away from
A(s) to a distance given by the deviation ofP2 from P1

(s) . As
the preimages of the fixed pointP1

(s) are dense inA(s), we
conclude that in the neighborhood of any point ofA(s), there
exists a positive measure set of points that give rise to
jectories that go away fromA(s) in the direction towardsP2,
i.e., the basin of attraction ofA(s) is locally riddled.

Trajectories that burst away fromA(s) are restricted to an
absorbing areadenoted in Fig. 2~a! by A. This invariant
region is bounded by the segments of thecritical curves L1
andL2 @29,30#. These curves are obtained as the first and
second images of the set

L05H ~x,y!uS x2
1

2D S y2
1

2D50J ,

which is the locus of points inR2 where the JacobianDF of
the mapF in Eq. ~3! vanishes. As long as the basin ofA(s) is
locally riddled only ~no other attractors insideA), most of
the trajectories entering into bursts will eventually be
tracted byA(s).

As we can see from Fig. 1, this type of locally riddle
dynamics occurs for a relatively wide region~denotedR1) of
the (a,«)-parameter plane. The lower boundary of this r
gion consists of two very different parts: a fractal bounda
defined by the blowout bifurcation curve, and a smoo
boundary corresponding to the symmetric two-cluster form
tion curve. The corresponding transformations of the dyna
ics of the system clearly involve very different processes

If the parameter point (a,«) leaves the regionR1 through
the fractal~blowout! curve, the absorbing areaA defines a
new attractor in the plane of the two-cluster state. This
illustrated in Fig. 2~b!. As we shall see in Sec. IV, howeve
this type of two-dimensional attractor arising from the coh
ent state in a blowout bifurcation is not stable in the who
N-dimensional phase space. Transverse to the two-clu
state, the maximal Lyapunov exponentl'

(2) is positive al-
though small, growing according to the power lawu«
2«blua,1<a<2, where«bl is the blowout bifurcation value

Consider now in more detail the second possibility whe
the (a,«)-parameter point leavesR1 through the smooth
5-5
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FIG. 2. Typical phase portraits for the globally coupled m
system~1! reduced to the symmetric two-cluster subspace@p50.5
in Eq. ~3!#: ~a! locally riddled basin of attraction for the cohere
stateA(s) after the riddling bifurcation (a53.8, «50.42),~b! on-off
intermittency after the blowout bifurcation ofA(s) (a53.8, «
50.34), and~c! globally riddled basin of attraction forA(s) after
stabilization of the asynchronous period-2 cycleP2 (a53.75, «
50.315). The light gray region in~a! and~c! represents the basin o
attraction forA(s), and the basin of attraction for the on-off attract
in ~b!. The dark gray regions in~c! represent the basin of attractio
for the cycleP2 whose points are plotted by crossed circles. T
curvesL1 and L2 delineate the absorbing areaA, and P1

(s) is the
fixed point embedded inA(s). Note that the on-off state in~b! is not
stable inN-dimensional phase space.
02620
two-cluster formation curve. The characteristic phase port
after this transition is presented in Fig. 2~c!. Two different
asymptotic states coexist: a coherent state given by the
chronous chaotic setA(s) and a periodic two-cluster stat
given by the cycleP2. The basin of attraction for the cohe
ent attractor becomesglobally riddledwith the basin ofP2.
In the phase diagram of Fig. 1, the parameter region wh
this kind of globally riddled dynamics occur, is denoted
R1,2. When (a,«) belongs toR1,2, both coherent and two
cluster regimes can be realized in system~1! when calcula-
tions are performed with randomly chosen initial condition
This follows from the stability of the cycles inN dimensions
as soon as they are stable in the two-cluster state~see Sec.
II !.

The lower boundary ofR1,2 in Fig. 1 is given by the
blowout bifurcation curve of the coherent attractorA(s). Un-
der this curve,A(s) is no longer stable even in averag
Hence, only two-cluster stable regimes can be manifeste
system ~1! provided that the parameter point (a,«) lies
above the three-cluster dotted-dashed curve (R2 region!. Be-
low the latter curve two- and three-cluster states coe
(R2,3 region!. Moreover, in the lower left corner of Fig. 1
one can observe a parameter region where the blowout c
falls below the three-cluster curve (R1,2,3 region!. Here, the
coherent chaotic state and the two-cluster state coexist
three-cluster dynamics.

The last region in Fig. 1, denoted byRc , is bounded by
the blowout curve from above and by the symmetric tw
cluster formation curves from below. Here, the dynamics
system~1! can be high-dimensional chaotic, provided th
strongly asymmetric clusters do not arise. We justify th
statement in Sec. IV by showing that symmetric two- a
three-cluster states are unstable in the wholeN-dimensional
phase space of system~1! and that the dynamics inRc may
be completely uncorrelated, i.e., it is not attracted by a cl
ter state of lower dimension. The role of strongly asymme
clusters for the formation of partially synchronized sta
will be considered in a forthcoming publication@31#.

C. Formation of the symmetric clusters

As shown above, the appearance of the symmetric~or
slightly asymmetric! two-cluster dynamics in the globally
coupled map system~1! is caused by the stabilization of th
period-2 or period-4 asynchronous cyclesP2 andP4. In this
section we shall consider how the moments of stabilizat
depend on a small cluster asymmetry, i.e., when the par
eterp in system~3! starts to differ from 0.5. A main conclu
sion is that the symmetric clusters, i.e., withp50.5, stabilize
at higher values of the coupling parameter« than other,
slightly asymmetric clusters. Moreover, the later the stab
zation occurs the larger the asymmetry is. For the symme
two-cluster state (p50.5), the cyclesP2 andP4 are born in
transverse period-doubling bifurcations of the coherent fix
point P1

(s) andP2
(s) , respectively. After the bifurcations the

are first unstable~saddles! to later stabilize in inverse sub
critical pitchfork bifurcations. A characteristic phase portr
for the situation when both cyclesP2 and P4 have already
become stable is presented in Fig. 3. This figure correspo
5-6
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to a parameter point in the regionR2 of Fig. 1 where the
synchronized state is a chaotic saddle.

For the case of slightly asymmetric clusters, the cyclesP2
andP4 can be obtained by continuation of those in the sy
metric case with the parameterp ~starting with p50.5). If
pÞ0.5, these cycles stabilize in saddle-node bifurcations
the main diagonal rather than via inverse, subcritical pit
fork bifurcations as in the symmetric case (p50.5).

Figure 4 shows the regions of stability for the vario
types of dynamics that evolve fromP2 and P4 under varia-
tion of p and « for two different values of the nonlinearit
parametera. In Fig. 4~a! (a53.8), the upper boundary of th
stability region~solid curve denoted SN! defines the momen
of stabilization of the asynchronous period-2 cyclesP2 in the
afore-said saddle-node bifurcations. This curve is clea
seen to assume its maximal value forp50.5, representing
the fact that symmetric clusters will stabilize before sligh
asymmetric clusters as« is reduced.

For a53.8, stabilization ofP4 occurs at lower values o
the coupling parameter than stabilization ofP2, and we find
the stability region forP4 ~and for solutions developed from
P4) in the upper right corner of the stability region forP2.
For a54.0 @Fig. 4~b!#, on the other hand,P4 stabilizes be-
fore P2 ~see Fig. 1!, and the stability region forP4 falls
above that ofP2.

As shown in Sec. II, the stability of a periodic cycle in th
two-cluster phase plane implies its stability inN-dimensional
phase space. Hence, the uppermost curves in Figs. 4~a! and

FIG. 3. Phase portrait of the globally coupled map system~1!
reduced to the symmetric two-cluster subspace@p50.5 in Eq.~3!#
after stabilization of both the asynchronous period-2~denoted byP2

and plotted by crossed circles! and the asynchronous period-4~de-
noted byP4 and plotted by stars! cycles. After the blowout bifur-
cation, the coherent stateA(s) ~dashed line segment! is a chaotic
saddle. The symmetric fixed point~denoted byP1

(s) and plotted by
the crossed square! and symmetric period-2 cycle~denoted byP2

(s)

and plotted by triangles! are repellors being after the transver
period-doubling bifurcations which give birth toP2 andP4. Basins
of attraction for the cyclesP2 and P4 are shown in dark and ligh
grey, respectively. Parametersa53.9 and«50.345. With further
reduction of« each of the cyclesP2 andP4 undergoes a sequenc
of additional bifurcations leading to various forms of quasiperio
and chaotic two-cluster dynamics.
02620
-

ff
-

ly

4~b! are the bifurcation curves in the (p,«)-parameter plane
for the appearance of the symmetric~or nearly symmetric!
two-cluster states. The overlapping stability regions forP2
and P4 imply that the system has two coexisting types

FIG. 4. Stability regions in the (p,«)-parameter plane for the
various types of dynamics in system~3! that develop from the asyn
chronous period-2 (P2) and period-4 (P4) cycles and represen
two-cluster states in Eq.~1!. Bifurcation curves denoted by SN, PD
andH correspond to saddle-node, period-doubling, and Hopf bif
cations, respectively. With decreasing values ofp we can followP2

through a cascade of period-doubling bifurcations into a cha
off-diagonal attractor that finally destroys in a boundary crisis. T
bold dashed curve bounds the region where the largest Lyapu
exponent transverse to the two-cluster state is negative. Here,
tem ~1! displays stable two-cluster states with a distribution b
tween clusters as defined byp and a dynamics that is given by th
attractors developed fromP2. Parametersa53.8 in ~a! and a54
in ~b!.
5-7
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two-cluster dynamics~see, e.g., Fig. 3!. With further varia-
tion of the parametersp and«, the cyclesP2 andP4 undergo
a variety of different bifurcations in which more complicate
two-cluster dynamics arises. Besides periodic cycles
higher periodicity, quasiperiodic and chaotic dynamics occ
Some of the bifurcation curves are indicated in Figs. 4~a! and
4~b! where period-doubling and Hopf bifurcation curves a
denoted PD andH, respectively. A more detailed examin
tion of these dynamics falls outside the scope of the pre
paper. We refer the reader to a previous study@20# where a
number of results in this direction are presented.

FIG. 5. Variation of the largest transverse Lyapunov expon
~solid bold curve! with the coupling parameter« for the two-cluster
states being~a! symmetric (p50.5) or ~b! with 2:1 variable distri-
bution (p51/3). Parametera54. Dashed curves represe
Lyapunov exponents within the two-cluster state. Note that, whe«
decreases, the state stabilizes inN dimensions if it becomes an
attracting cycle. Our interest is focused on the behavior imme
ately after the blowout bifurcation of the coherent state, which
curs at«50.5.
02620
f
r.

nt

If the attractor in a two-cluster state is quasiperiodic
chaotic, its stability within the two-cluster state does not i
ply its stability in the full N-dimensional phase space. Th
bold dashed curves in Figs. 4~a! and 4~b! denote the trans-
verse destabilization of the two-cluster attractors develo

t

i-
-

FIG. 6. Variation of the largest transverse Lyapunov expon
l'

(2) for the chaotic two-cluster stateA(2) arising immediately after
the blowout bifurcation of the coherent stateA(s). Here,A(2) has a
form similar to those shown in Fig. 2~b!, and the blowout bifurca-
tion occurs at«50.5. Parametera54. The three curves in~a! rep-
resent different values of the asymmetry parameterp. In all cases,
the transverse Lyapunov exponent is positive~although small!. The
dashed curve gives a variation of the transverse Lyapunov expo
l'

(1) of the coherent stateA(s). In ~b!, the same graphs in logarith
mic scale illustrate the power law dependence~8!. Here, the trans-
verse Lyapunov exponents forp50.5, p50.4, andp50.3 are plot-
ted by circles, squares, and triangles, respectively. As one can
straight lines within the marks fit the values of the exponents
have slopesa52 (p50.5), a51.8 (p50.4), and a51.7 (p
50.3). We conclude that the chaotic two-cluster state formed in
process cannot be stable inN-dimensional phase space.
5-8
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from P2, and the lower right curves represent their fin
boundary crises. The upper branch of the dashed curve c
cides with the saddle-node bifurcation curve of two-clus
stabilization. As we can see, there is a fairly large param
region where the attractor in the two-cluster state is qua
eriodic and yet transversely stable. Below this region ther
another region where the two-cluster state is transversely
stable.

IV. TRANSVERSE INSTABILITY
OF CHAOTIC CLUSTERS

In this section we show that the chaotic motions in t
two- and three-cluster states in general are transversely
stable. This applies in particular to the chaotic motions t
appear after the blowout bifurcation of the coherent attrac
A(s). To verify this, we show that the largest transver
Lyapunov exponentsl'

(2) ~for the two-cluster state! andl'
(3)

~for the three-cluster state! are positive. Moreover, immedi
ately after the blowout bifurcation«bl they grow in accor-
dance with a power law.

A. Chaotic two-cluster state

Figures 5~a! and 5~b! display scans ofl'
(2) over the range

from «50 ~uncoupled system! to right above the blowou
bifurcation («50.5) fora54 and for two different values o
the asymmetry parameter:p50.5 ~symmetric clusters! and
p51/3 ~1:2 cluster distribution!. The scans ofl'

(2) are shown
as bold curves. The dashed curves show the variation o
two Lyapunov exponents that control the two-dimensio
cluster dynamics~3!. In both cases the periodic two-clust
states stabilize after the blowout bifurcation and this giv
rise to a hyperchaotic attractor bounded in two-dimensio
phase space by the absorbing areaA ~see Fig. 2 where the
characteristic form ofA is illustrated!. In Fig. 5~a! there is an

FIG. 7. Variation of the exponenta in the power lawl'
(2)

;u«bl2«ua with the asymmetry parameterp. For symmetric clus-
ters (p50.5), a'2, anda→1 asp→0. Parametera54.
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interval around«50.23 wherel'
(2) is negative while the

Lyapunov exponents in the two-cluster plane are positi
Here, we have a transversely stable chaotic two-cluster s
However, through most of the scan the transverse Lyapu
exponent is positive when the longitudinal exponents
positive.

Figure 6 shows an enlargement of the rightmost parts
the graphs from Fig. 5 in order to illustrate the power law
growth for l'

(2) after the blowout bifurcation for differen
values of the asymmetry parameterp. Here,a54. As we can
see

l'
(2);u«bl2«ua, «→«bl , ~8!

where a>2 for the symmetric casep50.5 and decrease
with decreasingp. This result is supported by plotting th
graphs on logarithmic scale@Fig. 6~b!#. Here,D«5«bl2«,
and the slopes of the linear part of the graphs determine
exponenta in the power law~8!.

The graph ofa5a(p) as a function ofp is shown in Fig.
7. As it can be seen,a decreases with decreasingp. More-
over, a tends to 1 asp approaches 0 and to 2 asp ap-
proaches 0.5.

B. Chaotic three-cluster state

As we have just shown, chaotic two-cluster motion
when they appear after destabilization of the coherent ph
are transversely unstable. It follows that the chaotic motio
that arise must at least be three dimensional. We now s
that the dimension must also be larger than three. To this
we give a numerical evidence that chaotic motions in
symmetric three-cluster states are transversely unstable.

Figure 8 shows a plot of the transverse Lyapunov ex
nent l'

(3) versus parameter« for a symmetric three-cluste
state.l'

(3) becomes positive immediately after the blowo
bifurcation («50.5) and appears to grow in accordance w
a power law similar to Eq.~8!. This can be justified as fol-
lows. As illustrated in Fig. 9, the typical trajectory in th
chaotic three-cluster state behaves in such a way tha
spends most of the time very near the diagonal tw
dimensional planessz5$x5y,z%, sy5$x5z,y%, and sx
5$x,y5z%. Moreover, it switches between these planes in
apparently random manner. From this observation we c
clude that an approximate value for the transverse~to the
three-cluster state! Lyapunov exponentl'

(3) can be obtained
as calculated on the planessx ,sy , andsz , with the addi-
tional assumption that the average time spent near eac
these planes is the same. This gives

l'
(3)>~2l',1

(2)1l',2
(2) !/3, ~9!

wherel',1
(2) andl',2

(2) are the largest and the second transve
Lyapunov exponents for the chaotic motions in the tw
cluster planessx ,sy , andsz . Using the expression~6! for
the transverse Lyapunov exponents for two-cluster states
the formula~7! for three-cluster states, we come to the a
proximate formula~9!.
5-9
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To conclude our considerations, we note that the num
cal calculation ofl'

(3) has required the introduction of sma
noise of the order of 10222. Without this noise, trajectorie
are captured by the two-cluster dynamics because of fi
precision in the calculations. The average capturing times
shown in Fig. 10 for single (1028), double (10216), and
triple (10224) precisions, respectively. We suppose that t
capturing phenomenon can explain why high-dimensio
chaotic motions arising after desynchronization of the coh
ent phase have not previously been reported. Indeed,
regular calculation~without noise! gives evidence of two-
cluster dynamics even though this is actually transvers
unstable as soon as it is chaotic.

It was shown in@21# that cluster states arising after blow
out bifurcation of a coherent attractor@see Fig. 2~b!# cannot
be asymptotically stable in the wholeN-dimensional phase
space of the globally coupled map system~1!. As we can see
now, the lack of a parameter region of asymptotic stabi
may cause these clusters states to also be unstable o
average.

V. CONCLUSION

In order to refine the original phase diagram presented
Kaneko @1# we investigated in detail the bifurcations in
volved in the loss of complete synchronization and the f
mation of clusters of partially synchronized oscillators in
system of globally coupled logistic maps. We found that
loss of complete synchronization and the formation of sta
two-cluster states are two distinct processes. Moreover,
pending sensitively on the nonlinearity parametera of the

FIG. 8. Transverse Lyapunov exponentl'
(3) ~shown by circles!

for a symmetric three-cluster state as a function of the coup
parameter«. The largestl',1

(2) and the secondl',2
(2) transverse

Lyapunov exponents for the two-cluster state with 2:1 (p51/3)
variable distribution between clusters are also shown. The v
(2l',1

(2)1l',2
(2))/3 is represented by the bold dashed curve that fits

values ofl'
(3) . We conclude thatl'

(3) becomes positive immediatel
after the blowout bifurcation («50.5) and grows in accordanc
with a power law. Here,a54.
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FIG. 9. Synchronization errors calculated on a typical traject
for the chaotic three-cluster state@considering system Eq.~5! with
K53 andpj51/3, j 51,2,3)#. We have added a small noise of th
maximal amplitude 10222. The first 104 iterations are skipped, and
the next 1.23105 iterations are plotted. The trajectory spends m
of its time near the two-dimensional planessz5$x5y,z%,sy5$x
5z,y% andsx5$x,y5z%, and it switches between these planes
an apparently random manner. Parametersa54 and«50.495.

FIG. 10. Average~over 8000 initial conditions! capturing time
in a two-cluster state as calculated with single (1028), double
(10216), and triple (10224) precisions and shown by dotted-dashe
solid, and dashed curves, respectively. By iterating system~5! with
K53, pj51/3, j 51,2,3, anda54, we find that all trajectories are
captured by transversally unstable two-cluster states in a finite t
The capturing phenomenon and the associated spurious sta
with positive transverse Lyapunov exponents can be avoided
adding a small amount of noise to the numerical computations

g

e
e

5-10



w

rid
e

a
e

a-
th
n
h
pu
s
ug
c

ab
he
a
fu

th
le

lve
o-
ab
th
e.

y in
o-

ter
ca-
via
er
cles
ur-

o-
of
way
ster
il it

ics

ble
ex-
ys-
ing
abil-
lly

-

LOSS OF COHERENCE IN A SYSTEM OF GLOBALLY . . . PHYSICAL REVIEW E64 026205
logistic map, the stabilization of symmetric~or nearly sym-
metric! two-cluster states may occur before or after the blo
out bifurcation, leading to very different behaviors.

The loss of complete synchronization proceeds via a
dling bifurcation~in which the fixed point loses its transvers
stability in a period-doubling bifurcation! and a blowout bi-
furcation ~in which the transverse Lyapunov exponent for
typical trajectory on the synchronized chaotic set becom
positive!. If the blowout bifurcation occurs before the form
tion of stable two-cluster dynamics becomes possible,
synchronized chaotic state explodes into a high-dimensio
hyperchaotic state. The reason why this type of transition
not previously been observed appears to be related to s
ous numerical effects that cause the computed trajectorie
be captured in low-dimensional chaotic states, even tho
these states are transversely unstable. We showed that
otic two- and three-cluster states are transversely unst
immediately after the blowout bifurcation and obtained t
scaling relations relating to the variation of the maxim
transverse Lyapunov exponent with the distance to the bi
cation point.

Formation of the two-cluster states takes place via
stabilization of asynchronous periodic cycles. For coup
logistic maps~with the considered coupling structure! only
the asynchronous period-2 and period-4 cycles are invo
in the initial stage of the formation of the symmetric tw
cluster state. We proved that if any of these cycles are st
in the phase space of the symmetric two-cluster state,
they are also stable in the wholeN-dimensional phase spac
y,

o

ys

r-

.
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We also considered the influence of a small asymmetr
the distribution of oscillators between the clusters of the tw
cluster state. While stabilization of the symmetric two-clus
state takes place via an inverse, subcritical pitchfork bifur
tion, stabilization of asymmetric two-cluster states occurs
a saddle-node bifurcation off the main diagonal. With furth
reduction of the coupling parameter, the asynchronous cy
forming the two-cluster state may undergo additional bif
cations in which more complex behaviors arise. Chaotic tw
cluster dynamics may occur in relatively small regions
parameter space when the two-cluster attractor lies a
from the main diagonal. In the phase space of the two-clu
state, this type of behavior continues to be attracting unt
is destroyed in a boundary crisis. In the fullN-dimensional
phase space, however, the chaotic two-cluster dynam
tends to be transversely unstable.

We described a simple general algorithm of finding sta
cluster states based on the form of transverse Lyapunov
ponents. Considering only a low-dimensional reduced s
tem of coupled maps and calculating the correspond
transverse Lyapunov exponents, one can evaluate the st
ity of the cluster states for a very large lattice of globa
coupled maps.
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